Results for Development
Viewing 9

Oliver, M. (2011). Towards an understanding of neuroscience for science educators. Studies in Science Education, 47(2), 211–235.

In this review, Oliver calls for greater cross-pollination between neuroscience research and educational practice. She argues that a richer understanding of the brain can dispel educational myths—and indeed uses research data in this paper to do so. She explores ways in which brain science can not only inform emerging theories of learning and teaching but also inspire effective educational interventions.

Morehouse, H. (2009). Making the most of the middle: A strategic model for middle school afterschool programs. Afterschool Matters, 8, 1–10.

This paper summarizes key design elements for programs for middle-school-aged children, addressing issues of relationships, relevance, reinforcement, real-life projects, and rigor. The authors argue that these five components take into account the intellectual and emotional developmental needs of this age range.

Berti, A. E., Toneatti, L., & Rosati, V. (2010). Children's conceptions about the origin of species: A study of Italian children's conceptions with and without instruction. Journal of the Learning Sciences, 19(4), 506–538.

This study examines how early elementary school-aged children develop theories of the origin of species. It may interest ISE educators who are developing strategies for engaging their audiences with theories and processes of evolution. The article provides background on the research literature about teaching and learning of evolution. The results of this study suggest that direct instruction or interactions with Darwinian models, even at a young age, can support children's understanding of evolutionary theory, and may be as important as developmental or cultural concerns already documented in the literature.

Talanquer, Vicente (2009). On Cognitive Constraints and Learning Progressions: The case of "structure of matter". International Journal of Science Education, 31(15), 2123–2136.

This paper provides an interesting insight into how educators can support learners in coming to understand the nature of matter. Whilst the specific focus is on students’ implicit assumptions and reasoning strategies in a particular domain, the broader discussion exploring the differences between novice and expert thinking is relevant to all educators seeking to support learners engage with new content.

Salehjee, S., & Watts, M. (2015). Science lives: School choices and ‘natural tendencies.’ International Journal of Science Education, 37(4), 727–743. doi:10.1080/09500693.2015.1013075

Why do some people move into science while others move away? Salehjee and Watts collected 12 personal biographies that provide rich descriptions of the different paths—direct or more wavering—that individuals follow. The implications of this study suggest that the informal science sector needs to “keep doors open” for individuals at transition points.

Barron, B. (2006). Interest and self-sustained learning as catalysts of development: A learning ecology perspective. Human Development, 49, 193–224.

The author presents definitive arguments for the need to move beyond a “school-centric” approach to studying how people learn. Citing ecological perspectives on learning, this paper claims that for an understanding of how people develop interests, participation, and fluency in a given domain, it is necessary to first examine how these interests are developed and nurtured across time and settings. The researcher provides three case studies of teens who familiarized themselves with electronic technologies, each of them following different pathways, all of which spanned multiple settings and opportunities. The informal sector is sometimes designated as a niche where children can become interested, while school is the place where they can develop their expertise. This paper illustrates that the nature of interest and expertise development is very complicated, and the ISE sector can spark, sustain, and strengthen interest and expertise.

Brooks, M. (2009). Drawing, visualisation and young children's exploration of "big ideas." International Journal of Science Education, 31(3), 319–141.

Brooks uses Vygotskian theory to explain how drawing helps children to construct meaning and share their ideas with others. She argues that drawings help to bridge the gap between observation-bound thinking and more abstract, symbolic (i.e., scientific) thinking. The article offers ISE practitioners a clear introduction to Vygotskian theory and highlights the importance of drawing and visualisation when conducting inquiries and making sense of new concepts.

Hedegaard, M. (2010). Children's development from a cultural-historical approach: Children's activity in everyday local settings as foundation for their development. Mind, Culture, and Activity, 16(1), 64–81.

In this paper the author proposes a theory of development that integrates society, institutional practice and the child's activity. The goal is to inform efforts to create more developmentally supportive settings and opportunities for children. The proposed theory focuses on the everyday practices of children that take place in specific institutional settings (e.g., schools, afterschools, families) reflecting dominant cultural-societal views and arrangements. The paper provides a theoretical lens that could be of interest to educators who are seeking to understand how the particular affordances of the ISE setting can support children's development of interests and motives, especially with respect to science learning. The theory and the paper themselves are not specific to science.